Corroboration of Spiral Computed Tomography Angiography with D-Dimer Assays in The Accurate Diagnosis of Pulmonary Embolism and Assessment of Its Image Quality

Farheen Razvi*, Taranpreet Singh Kocchar; Tejas Kumar Mansukhlal Sejani; Gao Jian Bo

1 Radiology Department, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, PRC
2 Internal Medicine Department, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, PRC
3 Zhengzhou Medical University, Henan, PRC

* Corresponding Author: Farheen Razvi, E-mail: dr.frazvi@gmail.com

ABSTRACT

Introduction: Pulmonary embolism is a frequent cause of mortality and morbidity. Aim of this study was to evaluate the utility of spiral computed tomographic angiography in determining the prevalence of pulmonary embolism in a clinically suspicious group and to assess the image quality of a single source computed tomography in diagnosis of pulmonary embolism. We have also investigated the reliability of D-dimer test in ruling out pulmonary embolism.

Image quality, was assessed by analyzing the attenuation in the pulmonary trunk and its branches in comparison with the background noise. Mean attenuation values and standard deviation were recorded and displayed in Hounsfield Units. The computed tomography values, standard deviation values and signal-noise ratio obtained were then statistically analyzed using SPSS 17.0 software.

D-dimer test results were also obtained for the patients suspected of pulmonary embolism using rapid D-dimer testing and a reference range of 0 – 0.3 µg/l was considered as normal.

Results: Spiral computed tomography was a valuable method for identifying 20 patients with pulmonary embolism (sensitivity, 100%). It could correctly exclude pulmonary embolism in 28 out of 30 non-pulmonary embolism cases yielding a specificity of 94%. In 10 of the 20 patients devoid of pulmonary embolism; Spiral computed tomography provided an alternate clinical diagnosis. In the remaining 10 patients, spiral computed tomographic angiography scans were normal. The statistical analysis of the computed tomography values standard deviation and signal-noise ratio of the pulmonary trunk and pulmonary artery (without right or left predilection) showed a p-value>0.05. D-dimer Test showed elevated levels in 18 patients who were diagnosed with pulmonary embolism on spiral computed tomography scans. 8 patients without pulmonary embolism on spiral computed tomography scans also showed elevated D-dimer levels. The remaining 22 patients had normal D-dimer levels.

Conclusion: Spiral computed tomography has a good sensitivity and specificity for the diagnosis of pulmonary embolism. In the majority of patients who did not have pulmonary embolism, it provided important ancillary information for the final diagnosis. Therefore, combining Spiral computed tomography scan with a D-dimer Test is more effective in the accurate diagnosis of pulmonary embolism.
INTRODUCTION

Pulmonary thromboembolism (PTE or PE) and deep vein thrombosis (DVT) known collectively as venous thromboembolism (VTE) encompass one disease entity. PE originates from a DVT that occluded blood vessels of the pulmonary arterial tree, and if untreated can cause acute hemodynamic collapse compromising arterial blood flow to organs and eventual death (1).

With both environmental (acquired) and genetic factors contributing to the predisposition of the VTE, age, gender, racial and ethnic differences in the epidemiology of DVT/PE exists. Nevertheless as a frequent cause of mortality and morbidity, PE is a major global disease burden. A hospital – based study estimated the global burden of disability-adjusted-life-years (DALYs) from VTE to be 7.6 per 100,000. In the United States about 650,000 cases of PE occur each year, of this approximately 50,000 to 100,000 resulting in death (2).

Deaths from PE s mainly due to failure of diagnosis, around 400,000 diagnosis of PE are missed in the United States annually making one of the leading causes of preventable hospital deaths (3).

Conversely, < 20% (sometimes only 5%) of patients investigated for suspected PE actually have the disease. The clinical presentation of PE is nonspecific and manifested with wide variability, to avoid potential misdiagnostic algorithms for PE in suspected individuals incorporates the sequential use of various pre-test probability assessment, analysis of biomarkers of acute thrombosis (D-dimer test) and if necessary, imaging of the chest (4).

A negative D-dimer test, with tailored cut-off values effectively improves the exclusion of PE in non-high pretest probability group and also with positive d-dimer levels are advised for chest imaging. Pulmonary antegrade stick was done in the diagnosis of PE, providing a direct assessment of the vasculature with great sensitivity and specificity. However, being an invasive test with associated morbidity (6%) and mortality (0.5%) it is not a method of choice among physicians. Various noninvasive imaging modality such as ventilation perfusion (V-P) scanning, magnetic resonance imaging (MRI) and conventional computed tomography (CT) have since been used for diagnosis (5) with the introduction of spiral CT technology, it is now possible to image the chest in a short duration of time and analyze the pulmonary arteries during the peak of contrast enhancement. Many studies have demonstrated the spiral CT has higher sensitivity and specificity for the diagnosis of PE (9-15).

The objectives of the research were studied under three different prerogatives. First, to assess the reliability of spiral CT pulmonary angiography in the diagnosis of PE in a known sample of patients clinically suspected of PE. Second, to assess the image quality of single source CT in diagnosis of PE and third, assessing the reliability of D-dimer test in ruling-out PE.

MATERIALS AND METHODS

The research performed was a prospective study over a period of 16 months, from August 2014 to December 2015 at the CT department of the hospital affiliated to Zhengzhou Medical.

The study group included 50 patients (age range, 25-80 years; mean age, 50 years) clinically suspected of PE (based on the clinical condition and elevated d-dimer levels). All the 50 patients were referred for CTPA within 24 hours of clinical presentation in order to ascertain the presence of PE. However the final diagnosis was based on clinical examination after a 3-month follow-up. The CT scans were assessed for image quality by analyzing the attenuation in the pulmonary trunk and its branches in comparison with the background noise (BN).

SCPTA examinations were performed on a 64 row CT scanner (Discovery CT 750 HD, GE healthcare) as per the routine protocol of the department without any modifications. A plain CT was performed before the contrast enhanced CTPA. All CT data was acquired in a single breath-hold (inspiration) in the cranio-caudal direction from thoracic inlet to the diaphragm, including the lung fields. Following with the parameters set for angiography: tube voltage-120 kVp, tube current- 90 mAs, and gantry rotation time ~ 0.3 s and pitch factor of 1.2, detector collimation-128 x 0.6 mm. The field of view (FOV) was limited to 3 cm and slice thickness was 5 mm. Axial images were reconstructed using a medium of soft tissue kernel (B26f). Contrast enhancement was achieved with 30 ml of contrast material (Iohexol, 350 mgI/ml) followed by a 30 ml saline chaser bolus injected at 4 ml/s. Bolus tracking was used for automated examination start with a delay of 3s when a trigger threshold of 50 Hounsfield units (HU) in the pulmonary trunk was reached.

Images were reviewed in mediastinal window (window width, 450 HU; window level, 35 HU), pulmonary vascular window (window width, 250 HY; window level 35 HU) and the lung parenchymal window (window width;1500 HU; window level 500 HU). The images were analyzed for the presence of PE, or any other underlying abnormality in the mediastinum, chest wall or lung parenchyma. The presence of endoluminal clots or vessel cut off sign was considered as an embolism on CT. Measurement of the regions of interest (ROI) was performed on RIS/PACS workstation (centricity 4.1, General Electric healthcare Dornstadt, Germany) using the circle tool. Mean attenuation values and standard deviations were recorded and displayed in (HU). The attenuation in the pulmonary trunk (APTr), the pulmonary artery and lobar artery was measured. ROI was drawn as large as possible, to include maximum amount of the contrast filled lumen of the pulmonary arteries. If an embolus was present in the respective segmental pulmonary artery, the contralateral vessel was measured. All measurements were performed by radiologist with experience in chest CT. Signal-to-noise ratio was determined by the following equation -

\[\text{SNR} = \frac{\text{CTPulmonary Artery}}{\text{BN}} \]
The details for image quality were expressed as “mean ± standard deviations” of the HU values, SNR and SD (image background noise) and then statistically analyzed using SPSS, version 17.4 software. To compare quantitative data between groups, we used the independent t-test sampling for normal distribution data. A p-value < 5% was considered to be of statistical significance.

Table 3. P-value is greater than 0.05 computed tomography of Quality, SD values and SNR values of pulmonary trunk and pulmonary artery

<table>
<thead>
<tr>
<th>Group</th>
<th>Pulmonary Trunk (Mean ± SD)</th>
<th>Pulmonary Artery (Mean ± SD)</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT quality</td>
<td>378.03±92.75</td>
<td>350.34±83.47</td>
<td>1.569</td>
<td>0.067</td>
</tr>
<tr>
<td>SD value</td>
<td>19.36±9.35</td>
<td>21.59±8.33</td>
<td>-1.256</td>
<td>0.212</td>
</tr>
<tr>
<td>SNR value</td>
<td>22.35±8.90</td>
<td>17.89±7.01</td>
<td>2.778</td>
<td>0.798</td>
</tr>
</tbody>
</table>

(Abbreviations; CT: computed tomography, SD: standard deviation, SNR: signal-noise ratio)

RESULTS

The CT scans were positive and 20 patients right fully confirming the diagnosis of PE (Table 1). Hence, the prevalence of PE in patients with clinical suspicion of the condition was 40%. Of the 30 cases who had a final diagnosis negative for PE, 28 were negative on SCTPA (true negative cases) and 2 had inconclusive SCTPAs, reasons being artefact or poor contrast opacification. Thus, the sensitivity of CTPA for detecting PE was 100%, it also excluded PE in 28 out of 30 non-PE cases yielding a specificity of 94%. CTPA provided an alternative diagnosis in 10 (33%) out of 30 patients who didn’t have PE, comprising 20% of the 50 patients with clinical suspicion. To be absolutely certain if PE was not missed on CT, the results were tallied with the D-dimer test which were employed on all the 30 patients (Table 4). A vascular attenuation of 200 HU was issued for the pulmonary trunk, a value that has been previously described as attenuation margin for diagnostic CT angiography (25-27). The CT values, Image Noise (SD) values and SNR values had p-values > 0.05 proving to be statistically insignificant meaning there was no significant variation in the image quality.

On applying Pearson’s Chi-Square test the value is 0.0001 which indicates P-value to be less than 0.05. The result signifies the validity of the tool in assessing PE. Normal values indicate that the patient has no PE even within the segmental and sub-segmental arteries which is likely to be missed on CT. High value does not confirm PE as it can be elevated in many other systemic diseases as well.
DISCUSSION

A potential criticism to this study is that the final diagnosis and categorization of patients as those with and without PE is based on clinical outcome and not on a gold standard imaging study, such as the conventional catheter angiography. This is justified by the following facts: Older imaging tests, such as ventilation–perfusion (V/Q) scintigraphy suffer from a lack of specificity (4-6). Although some still regard conventional pulmonary angiography as the gold standard technique for diagnosis of PE, being an invasive procedure, in reality it is infrequently performed therefore; the most realistic scenario to measure efficacy of CT pulmonary angiography in suspected PE may be assessment of patient outcome. The prevalence of PE in clinically suspected cases have been estimated to be in the range of 35-45% (4-6) the prevalence of PE among patients with clinical suspicion of PE was 40% in this study. The sensitivity & specificity of CT for diagnosing PE in this study was 100% & 94% respectively. The calculations of sensitivity & specificity in this study were done per patient & not per embolus. Since upper CT findings cannot compare with any other imaging modality, we cannot ignore the chances of having overlooked the presence of small peripheral emboli which might be present. If the calculations of sensitivity, specificity were done per embolus rather than per patient, we would probably have got lower values. On the prospective investigation of PE diagnosis, or PIOPED study (21) only 6% of patients had PE limited to sub-segmental pulmonary arteries. Once again, since our CT findings were not validated against another imaging modality in this study, there was no way to be sure that we have correctly identified all the small peripheral (sub-segmental or smaller) emboli in this study and hence our calculations were probably biased towards larger central emboli on the expense of more peripheral emboli. Although isolated sub-segmental emboli (without emboli in larger arteries) were detected in only two (10%) of patients in this study, Occurrence of isolated sub-segmental PE is considered a risk for future acute pulmonary thromboembolism. A study of such patients showed that those who did not receive anticoagulation therapy had no evidence of recurrent PE at a 3 months follow-up.

Imaging Quality: A number of technical, anatomical, and patient related pitfalls may lead to misinterpretation of the CT images: Technical failures occur in 1% to 5% of scans, and usually are due to motion artifacts in dyspneic patients or insufficient vascular enhancement (10).

In patients with severe dyspnea, motion artifacts can produce respiratory mis-registration and inadequate sampling of the pulmonary vessels, resulting in focal areas of decreased attenuation which can mimic a clot.

Streak artifacts originating from dense intravenous contrast within the superior vena cava may obscure the right main and upper lobe pulmonary arteries. These streak artifacts are frequently observed when using a cranio-caudal image acquisition and highly concentrated contrast material. These artifacts can be minimized or eliminated by reducing
the iodine concentration or scanning caudo-cranially (16-21). The lymphatic and connective tissue located adjacent to the pulmonary arteries may mimic the appearance of pulmonary emboli. This pitfall can be minimized by careful review of the images and the use of additional imaging rendering tools such as cine-viewing and multi-planar reconstructions.

D-dimer Assay: The main aim of this study was to assess the potential value of a negative assay to exclude the presence of PE and reduce the number of performed SCTPAs. However, elevated d-dimer levels do not always indicate the presence of a clot. Elevated levels may be seen in conditions in which fibrin is formed and then broken down, as in recent surgery, trauma, infection, heart attack, and some cancers or conditions in which fibrin is not cleared normally, as in liver diseases, concentration of D-dimers also increase with age, compromising the specificity of the test in older patients, making it less useful for excluding PE in them. Raising the cut-off value of the test for older patients to points between 600 μg/l and 1000 μg/l increases the test’s specificity, but at the cost of safety. We found a low (negative) score to have a very high negative predictive value. Our findings are comparable to other studies in various health care settings. Dunn et al. reported a negative predictive value of 99.6% suggesting that negative results could help to reduce the number of performed CTPAs (41). More recently, Eng et al. and Hirai et al. concluded that
the test alone was suitable for screening patients with a clinical suspicion of PE (52). However, a number of case reports have questioned its exclusivity in ruling out PE (18). There is compelling evidence that a negative result can effectively exclude a PE when it is combined with a low pretest clinical probability score. The lasting time of the elevated levels after the occurrence of PE may limit its value in diagnosis. Although the majority of patients have elevated levels as long as 12 days after diagnosis (17). In a few patients with PE, the level returns to normal limits by the seventh day (4). In our study, we have carefully screened patients for suspicion of acute PE. Of our patients, 80% (40 of 50) presented with chest pain, shortness of breath, hemoptysis, or other signs of acute distress (such as unexplained hypoxemia, acute confusion and hypotension) within 7 days. It is not known how long after the initiation of clot formation it becomes elevated in the systemic circulation. Bounameaux and coworkers (3) also reported one patient with a D-dimer level of < 0.5 µg/l who had elevated levels on subsequent measurement. Therefore, they may not be useful in patients presenting immediately after onset of symptoms but this appears to occur in a minority of patients. Previous investigators have reported that the assay may be more useful in diagnosis of outpatients than inpatients (4, 22). We conclude that a negative assay by the quick and inexpensive latex agglutination assays is a clinically useful tool in excluding the presence of PE in patients with symptoms present for less than one week, with normal liver function, no active malignancy and no surgery within 3 months. A negative assay should never prevent further investigation, if the clinical suspicion for PE is high.

A practical and evidence based approach is to combine a result with a validated clinical risk score to help select suitable patients for CTPEA. This may result in better use of limited resources, avoid exposure to unnecessary radiation and potential complications from iodinated contrast. It should not be used when the clinical probability of that condition is high. Both increased and normal levels may require follow-up and can lead to further testing. People with positive tests require further study with other diagnostic imaging for excluding PE.

Therefore, the combined spiral CT with d-dimer can be extremely useful in ruling out outpatient patients with PE.

CONCLUSION

The larger segments of pulmonary artery, the pulmonary trunk and the left/right pulmonary artery has p-value > 0.05, which illustrates that the CT values, SD value and SNR of the pulmonary trunk and arteries (right or left) is good enough to diagnose PE.

Correctly identified 20 patients with a final diagnosis of PE, excluded PE in 28 out of 20 patients with a final diagnosis of no PE and provide an alternative diagnosis in 20 out of 30 patients without PE which is 40% of the total 50 patients age were clinically suspected with PE. The Sensitivity and specificity of the CTPA for diagnosing PTE in the study was 100% and 94% respectively. Therefore, a spiral CT has the sensitivity and specificity for diagnosis of PE. In majority of patients, poor do not have PE; it also provides important ancillary information for final diagnosis. The sensitivity and specificity of the d-dimer test is 90% and 73% respectively. Therefore, a sensitive assay cannot accurately rule out PE; however the lack of specificity renders it inefficient as a stand-alone diagnostic test.

In conclusion, spiral CTPA and complimented with d-dimer assay can be used as the chief diagnostic and confirmatory test for PE.

ACNOWLEDGMENTS (Funding source)

The researchers appreciate the CT department of the 1st affiliated hospital of Zhengzhou Medical University for their co-operation and support.
AUTHOR CONTRIBUTIONS

Design of the work, preparation of manuscript was carried out mainly by the 1st author FR. TSK and TS assisted in data collection and analysis. All authors have read and approved the paper.

CONFLICT OF INTERESTS

None

ETHICAL STANDARDS

The study protocol has been approved by our institution.

REFERENCES

24. LIU XIAO-BO, LIU JIN-GANG, LIU LI-QUN, et al. (Department of Cardiothoracic Surgery, Hospital Affiliated to Weifang Medical College, Weifang 261031, China) THE EFFECT OF CT ON THE THERAPY OF PE[J]; Acta Academiae Medicinae Qingdao Universitatis; (24) 2010-06

25. HUANG Ze-Hec, ZHONG De-Jun, JIANG Sheng, et al. (Department of Radiology, Qingzhou First People's Hospital, Qingzhou 535000, China) Diagnosis value of multi-slice spiral CT angiography to PE[J]; Acta Medicinae Sinica (25); 2010-03

31. ZHOU Zhi-peng, WANG Hai-long, DU Zhen-zong, et al. (Department of Radiology, Affiliated Hospital of Guilin Medical College, Guangxi 541001, P.R. China) Study of chronic pulmonary thromboembolism model in rabbits with 64-slice spiral CT[J]; Radiologic Practice; (31) 2011-04

44. ZHANG Yong-kang 1, LIU Yun 2*, CHEN De-jie 1, LIAO Xiao-feng 1, WANG Jiang-ping 1, HUANG Hua-jun 1. Department of General Surgery 1, Department of Obstetrics and Gynecology 2, the Central Hospital of Xianguang City, Xiangyang 441021, Hubei, CHINA; Diagnostic and therapeutic experiences of 22 cases of acute mesenteric ischemia[J]; Hainan Medical Journal, (44) 2012-23

45. Zhang Li, Zeng Wenbing, Wang Mingquan, He Ze-jun 1. Department of Cardiothoracic Surgery, Hospital Affiliated to Weifang Medical College, Weifang 261031, China); THE Diagnostic and therapeutic experiences of 22 cases of acute mesenteric ischemia[J]; Chongqing Medicine; 2012-24

French survey.Presse Med 2012 (50); 31:929-932.
51. LIU Lian-rong, FAN Yong, ZHAO Xin-qian, XING-Zhi-heng. Dept of radiology, Tianjin Haihe hospital 300350, China; The Diagnostic Values of Multi-slice Spiral CT Pulmonary Angiography in PE[J]. Journal of Clinical Pulmonary Medicine (51); 2012-03
54. in the diagnostic workup of suspected pulmonary thrombo-embolism at high altitude. Medical Journal Armed Forces India68, 142-144. Online publication date: 1-Apr-2012 (54).
56. PEI Guang-hua, ZENG Chun. Department of Radiology, Songzi People’s Hospital, Jingzhou, Hubei 434200, China; Clinical value of 16-slice spiral CT in the diagnosis of PE[J]. Journal of Clinical Pulmonary Medicine (56); 2013-06
60. The PIOPED Investigators Value of the ventilation/perfusion scan in acute PE. J.A.M.A. 2013 (60).